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ABSTRACT 

It is shown how abstract localization theory may be applied in order to associate 
to a not necessarily noetherian pi algebra a ringed space (Spec(R), OR), which 
behaves functorially with respect to extensions and which possesses suitable 
features allowing one to study this type of ring from a geometric point of view. 
These results generalize previous ones, obtained by F. Van Oystaeyen and the 
author in the noetherian case. 

In [13] it was shown how to associate to any left noetherian prime pi algebra R 

a noncommutative "afline scheme" (Spec(R), OR). Here Spec(R) is the space of 

all prime ideals of R and OR is a structure sheaf on Spec(R), which is 

constructed locally by using a combination of symmetric localization as intro- 

duced by D. Murdoch and F. Van Oystaeyen in [8, 11] and bimodule localization 
as studied by F. Van Oystaeyen and A. Verschoren in [13]. It was also pointed 

out in [13] how to construct a similar structure sheaf in the prime case, even if R 
is not necessarily left noetherian. The latter construction however is only useful 
in studying birationality questions, since it does not possess nice enough 
functorial features in general, mainly because it is not defined by means of 
localization techniques. In the present note, we will show how to construct 

structure sheaves in the prime case, that behave functorially even in the absence 

of the noetherian hypothesis. If the base ring R is commutative, then the sheaf 

we construct coincides with the usual structure sheaf on Spec(R). Moreover, if R 

is not necessarily commutative, then this sheaf coincides with the one considered 

above, whenever R is left noetherian. Finally, the ringed space we thus obtain 

behaves functorially with respect to extensions in the sence of C. Procesi [9] and 
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yields back the ring R as the ring of global sections. Briefly: the structure sheaf 

constructed this way enjoys the same properties as the one studied in [13], but 

"works" also in the nonnoetherian case. 

1. For simplicity's sake we will assume throughout that R , . . .  is an affine 

prime pi algebra over a field. We assume the reader to be familiar with the 

language and main results of the theory of localization at an idempotent kernel 

functor in R-mod, the category of left R-modules, such as exposed in [5, 6, 10]. 

Recall that if o- is an idempotent kernel functor in R-mod, then we denote by 0~ 

the associated localization function and by Lf(tr) the associated Gabriel filter. 

The quotient category at o- is denoted by (R,~)-mod; it consists of all 

R-modules M which are ~-closed, i.e. such that the natural morphism 

j~ : M ~ O~ (M) is an isomorphism. When R is left noetherian, typical examples 

of idempotent kernel functors in R-mod are O'R p and o~, where P ~ Spec(R) 

and I is a (two sided!) ideal of R, defined by their Gabriel filters ~(o-R_p) resp. 

5¢(trx), which consist of all left ideals L of R such that there exists an ideal I Z  P 

with I C L resp. such that there exists a positive integer n with I" C L. If R is 

not left noetherian, then in general these definitions do not yield Gabriel filters, 

as one easily verifies. However, if R is commutative, then this construction 

works for any prime ideal P and any finitely generated ideal I of R. 

2. Define an idempotent kernel functor o-' in R-mod by its torsion free class 

ff~ which consists of all M E R-mod such that AnnM (I) = {m E M; I m =  0} = 0. 

It is easily verified that this yields a torsionfree class, indeed. Moreover, we have 

L ~ Lf(e 7 ) if and only if R / L  is tr'-torsion, i.e. 0 = HomR (R/L,  M) = AnnM (L) 

for all M E ~'~, i.e. AnnM (L) = 0, whenever AnnM (I) = 0 for any M E R-mod. 

It follows that the quotient category (R, ~r~)-mod consists of all M ~ R-mod 

such that the canonical map M = HomR (R, M ) ~  HomR (/, M) is bijective. This 

idempotent kernel functor was first considered by B. Mueller in [7]. 

3. LEMMA. If R is left noetherian, then for any ideal I of R, we have o "I = trx. 

PROOF. If M is o-j-torsionfree, then in particular, for any m E M, we have 

that lm = 0 implies m = 0, hence AnnM (I) = 0 and M E if1. Conversely, if M is 

trl-torsionfree and m E ~M,  then I"m = 0 for some positive integer n, so 

I ( I " - lm)=O implies that I"-~m =0,  as AnnM(I )=0 ,  hence by iteration we 

obtain m = 0. It follows that M is o-~-torsionfree. As the torsionfree classes of ~r ~ 

and o-~ coincide, we get ~r ~ = ~r~. [] 
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4. LEMMA. For any ideal I of R we have ~ = raJ,~. 

PROOF. It is clear that if J and K are ideals of R with K E ~(crJ),  then 

~r K _-< 0.J, hence r,d(z~=< o.~. Conversely, from A. Braun's [2] it follows that for 

any ideal I of R we may find a positive integer n such that rad(I)" C L hence 
IE~(crr~d(~)), and 0.~-<_rr radar). Indeed, since R / I  is affine over a field, its 

Jacobson radical is nilpotent by [2]. But R / I  is also a Hilhert algebra (cf. [9]), 

hence its Jacobson radical coincides with its prime radical. As rad(R/I )= 

rad(I)/I, this yields the assertion. [] 

5. Recall that an R-bimodule (in the sense of M. Artin [1]) is a two sided 

R-module  M which is generated over R by its R-centralizer M n, which consists 

of all m E M such that rm = mr for all r E R. Similarly, a ring morphism 

f :  R ~ S is said to be an extension (in the sense of C. Procesi [9]) if f endows S 

with an R-bimodule structure, i.e. S = f (R)S* ,  where S R = {s E S; f ( r )s  = sf(r) 

for all r E R }. Although the category bi(R) of all R-bimodules (considered as a 

full subcategory of R-mod-R,  the category of two-sided R-modules)  is not even 

abelian in general, a localization theory in bi(R) may be developed as in the 

one-sided case. In particular, an idempotent kernel functor in bi (R)  is a left 

exact subfunctor or of the inclusion hi(R)--~ R-rood-R, such that o ( M / o M )  = 0 

for any R-bimodule M. Note that kernels, cokernels and exactness properties 

will always be considered within R-mod-R.  The bimodule of quotients of an 

R-bimodule M at 0. is by definition an R-bimodule morphism j~ : M ~  Q~i(M) 

such that Ker(j ,)  and Coker(j~) are a-torsion and such that O~(M) is faithfully 
o--injective, i.e. such that for any exact sequence O-->E'-->E--->E"-->O of 

R-bimodules such that E"  is tr-torsion and any f E HOmbi~R)(E', Qb~(M)) there 

exists a unique g E Homb~(R)(E, Q~(M))extending f. We have proved in [13] that 

such a bimodule of quotients always exists and that it is essentially unique. It has 

also been pointed out, cf. [13, IV. 1.29], that an R-bimodule  M is 0.-injective in 

bi (R)  if and only if for all I E Lf2(0.), the set of all ideals I of R such that R / I  is 

0.-torsion, and any f :  I ~ M  in R-rood-R, there exists q E M R such that 

f ( i )  = iq for all i E I. 

One should be careful, however, that the filter 2?2(0 . ) does not determine 0. 

unambiguously. Yet, if m E M",  then m E 0.M if and only if I m =  0 for some 
ideal I E ~2(g).  

6. It is clear that any idempotent kernel functor 0. in R-mod  induces (by 

restriction) an idempotent kernel functor in bi(R),  hence for any such ~r we may 
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construct the R-bimodule of quotients Q~(M). This bimodule may be obtained 

as follows: from [13, IV. 1.22] one deduces that the localization Q. (M) of M in 

R-mod may be endowed with a canonical, essentially unique two-sided R-  

module structure and an easy verification shows that we may put Q~(M)= 
RQ,(M) R. In particular, Q~(R) is a ring, the canonical morphism 

j. :R--~ Q~(R) is an extension and Q~(M) is a Q~i(R)-bimodule for any 

M E bi(R). Of course, if R is commutative, then we have Q~(M) = 0 , (54 )  for 

any M E R-mod = bi(R). 

Let us denote by Spec(R) the space of prime ideals of R endowed with the 

Zariski topology, i.e. the open subsets of Spec(R) are of the form X(I)= 
{P E Spec(R); I ~  P} for some ideal I of R. Note that X(I)= X(rad(I)). If we 

write Q~(M) for the R-bimodule Q~,(M), then we obtain: 

7. PROPOSITION. Associating Q~'(R) to the open set X (I) C Spec(R) defines 
a presheaf of rings on Spec(R). If we denote by OR the associated sheaf on 
Spec(R), then (for affine prime pi algebras R ) the " affine scheme" (Spec(R), OR ) 
behaves functorially with respect to ring extensions in the sense of Procesi. 

PROOF. If X(I) C X(J), then rad(I) C rad(J), hence ~-r,~,) C ~r,dU), SO tr' => 

O "~, by Lemma 4, and we obtain an essentially unique ring morphism 

p(I,J): Q~i(R)---~ O~i(R), which induces the identity on R, by [13, IV. 1.37.]. 

This shows immediately that we thus obtain a presheaf of rings OR on Spec(R). 
If f : R ~ S  is an extension, then it induces a continuous morphism 

tk =" f  : Spec (S)~  Spec(R) by sending Q E Spec(S) to f-l(p) E Spec(R) and if 

X(I)  is an open subset of Spec(R), then $-I(X(I))= X(Sf(I))C Spec(S). Note 

that Sf(I) is an ideal of S, since f is an extension, cf. [9]. 

Let us now show that for any f as above and any ideal I of R there exists a 

unique ring morphism f~:Q~i(R)-->nbivsf,)~lSXj extending f. First factorize f 

through T = R/Ker(f)  as follows: 

R f ~ S  

T 

Here u is a central extension, i.e. T = u(R)Z(T), as u is surjective and v is an 

extension, since f is an extension. Moreover, T is again an affine prime pi 

algebra. 

Let us construct f~ in 3 steps. 
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(a) Qb,'(R )--~ O~.,,,(T) 
The idempotent kernel function 0 "I induces an idempotent kernel functor 

u,cr * in T-rood, with torsion class given by the left T-modules M such that RM, 

the left R-module  from M by restriction of scalars through u, is o--torsion. Of 

course, u,cr I induces an idempotent kernel functor in bi(T), denoted in the 

same way, and from [13, IV.2.5] and the fact that u is a central extension, it 

follows that there exists a canonical ring isomorphism O~i(nT)= bi Q . j ( T )  and 

hence a central extension Q~i(R)---~ Q~ij(T). 

(b) Q~'.,,(T)---~ O~, , (T)  

First note that if g : U ~ V is an arbitrary extension and K is an ideal of U, 

then for all L E ~(~r K) we have Vg(L)E ~(oV*~r)). Indeed, if N E V-rood has 

the property that AnnN(Vg(K))= 0, then, if Vg(L)n = 0 for some n E N, we 

have that n E A n n u N ( L ) = 0 ,  since A n n u N ( K ) = 0 .  It follows that 
Vg(L) ~ ~(oV*cr)). Now, if L E Lt(u,~r ') ,  then T/L is ~rl-torsion by definition, 

so u(L ' )CL for some L ' E ~ ( ~ r l ) .  But u ( L ' ) = T u ( L ' ) E ~ ( o  ""a)) by the 

foregoing, hence L E ~(o-Ut~)). It follows that u,cr ~ _-<or ~c~), so [13, IV.I.37] 

yields the existence of an extension Ob,~,--~ Q~i,)(T). 

Q.,,)(T)---> ,i (c) ~' Osr.~(S) 
Since v : T--~ S is an injective extension of prime pi algebras, v induces an 

injective extension v':O(T)---~ Q(S) between their (central simple) classical 

rings of fractions. Since T and S are prime, they are clearly o """)- resp. o "sm)- 
torsionfree, hence for any q E Q,,)(T) we may find a left ideal L E LP(cr "a)) 

such that L q C T .  It follows that Sv(L)v ' (q)CS and since Sv(L)  E 

3~(o "s°~""))) = ~(~r sin)) by the remarks made in (b), we obtain that v' maps 

O.a)(T) into Osm)(S). Since one easily checks that this map sends O.v)(T) r C 
Z(Q(T))  into Osm)(S) s C Z(Q(S)), we get an extension O.cl)(T)---~b' Osr.)(S) 
The composition of the previous maps yields an extension Q~i(R)"- '> bi 

which extends f : R ~ S. Assume that g~, g~ : Qbi(R)-----> r~bi /S x ,.esm)t j both extend f, 

then h = g , - g 2  is an R-bimodule morphism which factorizes through 

Coker(j~ : R ---> Q~(R )). The image of the induced morphism 

: C o k e r ( j l ) ~  r ~  ~S ~ ~'sm)~ ) is a o'S-torsion R-bimodule.  On the other hand, since 
bi i f . o  -~ _-< o "s~") by the remarks made in (b) and since Osm)(S) s o-Sm)-torsionfree, 

/ '~bi  iS" ~ we obtain that ,~sm)t ~ is a o-~-torsionfree R-module.  It follows that /; is the 

zero-morphism and that g~=g2. For any open X(I)CSpec(R) ,  let 

O,(X(I)) : Q~ (X(I))--> ($ , Qs)(X(I)) be the map 

tq t,i I S ,~ f , :QR(X(I))  = Q)'(R)--> ,-'sm)~ 

= QS ( X ( S f ( l ) ) )  = q$ ( ~ ) - l ( x ( / ) ) )  = ( 1 ~ ,  Qs)(X(I)) 
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then one easily verifies that the collection {O(X(I))} defines a morphism of 

presheaves of rings O~ : QR -* ck,Qs hence of sheaves of rings 0 : OR ~ 4),Os (by 

sheafication). This yields a morphism of ringed spaces ( S p e c ( S ) , O s ) ~  

(Spec(R), OR), which may be checked to define a contravariant functor 

(Spec(R), OR) with respect to ring extensions. We leave details to the reader. [] 

8. Note. From Lemma 3, it follows that the ringed space (Spec(R), OR) 

coincides with the one constructed in [13], whenever R is left noetherian. 

9. Let us now calculate the stalks of the sheaf OR or, equivalently, of the 

presheaf QR. As we have pointed out before, since R is prime, it is torsionfree 

for all o-' hence all "restriction morphisms" O(I,J): Q ~ ( R ) ~  Q~(R) are 

actually injective, so the presheaf QR is separated. It follows for any P E 

Spec(R ) that 

OR,P = QR,e = lim.>Obi(R) = U Ob~(R) C O(R). 
X(I)3P I.~P 

Recall that for any prime ideal P of R we may define an idempotent kernel 

functor trv in hi(R) by putting 

crp (M) = N {Ker(f); f ~ Hom,~m(M, E"~(R/P))} 

for any R-bimodule M. Here Eb~(R/P) is the injective hull (in hi(R)) of R/P. 
Actually, trp is induced by an idempotent kernel functor in R-mod-R,  defined in 

a similar way, but replacing Eb~(R/P) by E(R/P), the injective hull of R/P in 

R-mod-R.  It is easy to see that Ze2(tr,) consists of all ideals I of R with I ~  P. 

Moreover, if ~(trR-p) defined in 1 is a Gabriel filter (e.g. if R is left noetherian 

Q,~(R) ), cf. Let us or commutative) then ~ ~ = Q~R ~(R [13. IV.3.4]. write Rp for 
bi Q~(R). 

10. PROPOSITION. For any P E Spec(R) we have OR,v = Re. 

PROOF. We have already pointed out that 

= U 

Note first that Q ~ ( R ) C  Rp for all I C  P. Indeed, if q E Q,(R) R, then we may 

find a left ideal L E 3?(0/)  with Lq C R. Since LRq C R and LR E ~( t r  J) as 

well, we may assume L to be two-sided, It follows that the R-bimodule 

R + Rq/R C Q~(R)/R is annihilated by L. But L E 3?2(tre), for if L C P, then 
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AnnR/p(L) = R/P/O,  whereas AnnR/p(I)= 0, since I,~ P. We thus have that 

R+Rq/R  is ~ torsion, hence qEQ~,(R+Rq)=Rp,  showing that 

Q~(R) C Re. Conversely, since Rp/R is a ~r~-torsion bimodule, for any q ~ R 

we may find I E 5f2(trp), i.e. IK P, with Iq C R, hence q ~ QI(R), and even 

q E Q~(R) R. It follows that R~C U Q,(R) R hence that Re C [,.J Q~(R), apply- 

ing [13, V. 3.7] to the inductive union of the Q~(R). This proves the assertion. [] 

Note that from this or the fact that o -~ = o-i for any finitely generated ideal in a 

commutative ring, one easily deduces that OR is just the usual structure sheaf on 

Spec(R) in the commutative case. 

11. PROPOSITION. The global sections of OR are given by F(Spec(R), OR)= 

R. 

PROOF. Consider the etale space OR on Spec(R) associated to OR. A basis of 

open sets for On may then be given by the g(I), which consist of the families of 

sp E Rp, where s E O~i(R), where sp is just viewed as an element of Rp and 

where P varies through X(I) C Spec(R). It follows that a global section of OR or 

OR is given by a family of open subsets X(L) which covers Spec(R) and an 

element 

s ~  I"1 hi O,°(R). 
ct 

But then EIo = R, hence 

N bi O,o(R)c  fq R,.  
ct p 

Consider an element 

s E N R p ,  
P 

then we may find for each prime ideal P an ideal Ipg P with Ip, C R, as one 

easily verifies, hence 

so s E R, since (EIP),£ P for all P E Spec(R). It follows that F(Spec(R), OR)C 
R. This other inclusion is obvious, since QR (Spec(R)) = R and Q, is separated. 

[] 
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12. COROLLARY (of the proof). For any open subset X( I )  C Spec(R) we have 

r(x( t ) ,o , )=  f3 U,. 
I C P  

This may be proved along the lines of the previous proof. [] 
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